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Abstract. This paper aims to develop an efficient and safe navigation
framework under relaxable constraints. However, constraint-based navi-
gation planning is challenging since the structure of the navigation envi-
ronment and the existence of relaxable constraints are difficult to predict
in advance. Furthermore, constraint relaxation priority varies depending
on operation and task conditions. To address this, we introduce a novel
reactive constraint-relaxation-and-planning method that autonomously
identifies a constrained region to violate and redetermines a navigation
plan that balances safety and efficiency in real time. We validate our ap-
proach through both quantitative and qualitative analysis using CARLA
simulations, achieving a navigation success rate of 95% and reducing the
navigation distance in the constraint region by 60% compared to scenar-
ios with no constraint relaxation.

Keywords: safety-aware navigation, spatial constraints, constraint re-
laxation

1 Introduction

Advances in navigation platforms have significantly increased the prevalence of
robots with enhanced mobility in urban environments [1–4]. The goal is to build
an urban navigation planning framework that enables a robot to find the human-
like safe but efficient path in complex environments. However, the diverse nature
of urban areas raises the challenge of selecting a safe path while minimizing
navigation costs since the environment structure is not known in advance.

As a solution, researchers often investigate reactive task-and-motion planning
(TAMP) methods that find a task-wise complete and path-wise optimal plan in
an iterative manner. For example, Li et al. introduce a reactive TAMP framework
that leverages linear temporal logic (LTL) to find a sequence of action commands
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Fig. 1: Overall framework of the constraint relaxation-based navigation method.

satisfying logical specifications, given environmental changes [5]. However, real-
world applications often fail to find a complete solution without passing through
dangerous regions.

To resolve this issue, conventional studies predefine the priorities of con-
straint regions and suggested methods to reach destinations by selectively vio-
lating lower-priority constraints in unavoidable situations [6–10]. However, the
prioritization of constraints is nontrivial, requiring a comprehensive understand-
ing of both the environment and task goals.

To address these issues, we introduce a novel reactive constraint-relaxation-
and-planning method that autonomously identifies a constrained region to tem-
porally relax, enabling online replanning that balances safety and efficiency on-
line. Our method builds on an LTL-based TAMP framework [5] to find a com-
plete and optimal path within the current map. We improve the method by
converting constrained regions into traversable areas, selecting the region with
the highest relaxation score, when a constrained area significantly impedes ef-
ficient goal reaching, as illustrated in Fig. 1. Further, we propose a novel com-
posite relaxation score based on distance and commonsense measures derived
from large-scale language dataset. This score guides the generation of a relaxed
path plan to enable effective, human-like navigation. We evaluate the safety and
completeness of the proposed navigation method both qualitatively and quanti-
tatively using an open-source simulator for autonomous urban driving.

2 Related Work

2.1 Path Planning-Based Safety-Aware Navigation

Traditional planning methods often utilize cost-based search algorithms (e.g.,
Dijkstra or A* algorithms) to safely navigate around areas. However, accurately
modeling such costs is challenging, particulary when environmental information
is sparse. This significanly lowers the completeness of planning approach in real
world. Alternatively, recent studies often estimate the traversability of regions,
including risky areas (e.g., stairs, narrow aisles, and grass), to enable more ro-
bust path planning. To assess traversability, these studies leverage various sensor
data [11–13] or adopt vision-based self-supervised learning techniques [14, 15].



BA Construction

TS Construction

Planner

BA

TS

X
Design
Path

Task
Plan Path

Following
Path

Robot

Velocity
Command

Semantic Map

Linear Temporal Logic

Fig. 2: Path planning block diagram. Given semantic map and linear temporal
logic (LTL) inputs, the high-level planner devises a task plan, and the low-level
path and motion planner generates a velocity command.

However, the difficulty in intuitively understanding the computed traversability
limits its application to urban environments with frequent unpredicted behavior.
In addition, traversable areas may require additional safety consideration based
on social conventions.

In this paper, we also evaluate the navigation risk of constrained areas by a
commonsense-based score to consider semantic safeties as well as physical risks,
and express the evaluation result in formal language as a task command.

2.2 Task Planning-Based Safety-Aware Navigation

Task planning-based research handles hazardous areas by defining constraints us-
ing high-level formal language for intuitive representation and constraint avoid-
ance [16–19]. If necessary, violation or dynamic modification of formal language-
given constraints can help to achieve the task goal [20].

First, the minimum constraint violation method finds a path that violates
as few high-priority constraints as possible. This method defines the constraint
priority as a dictionary expression [9, 10], cost [7], or hard-soft constraint [6, 8] to
find the optimal path that violates the least number of constraints. As defining
constraint prioritization requires prior environmental understanding, existing
work utilizes predefined constraints and priorities from various regulations.

Next, constraint modification methods minimally adjusts constraints at the
task level to generate a feasible plan by considering combinations of constraints
to find a new feasible constraint set that enables the execution [21–23]. Unlike vi-
olation, constraint modification does not require the prioritization of constraints
to be defined in advance, but instead requires a computationally intensive com-
binatorial consideration of constraints.

In this paper, we take the advantage of formal language to define constraints,
and propose a reactive constraint-relaxation methodology that relaxes constraint
regions by modifying the formal language-given task command. We evaluate the
constraint regions using distance-based and commonsense-based scores.

3 Path Planning Methodology

We employ a path planning method to obtain movement commands that satisfy
sequential tasks and constraints, as illustrated in Fig. 2. This method proceeds
through three stages: (1) semantic map and linear temporal logic (LTL) input,



(2) their compression to transition system (TS) and Büchi automaton (BA), and
(3) product automaton (PA)-based path planning.

3.1 Inputs

Semantic Maps: A semantic map represents a meaningful structure and fea-
ture of the environment recognizing ground labels and obstacles from sensors.
The map also depicts areas in which constraint relaxation occurs according to
user commands.

Linear Temporal Logic (LTL): LTL is a logic that models time as an in-
finitely expandable sequence of states, and is used in this paper to express se-
quential tasks and constraints, with formula syntax as:

φ = π | ¬φ | (φ1||φ2) | Xφ | (φ1Uφ2), (1)

where π ∈ U is an atomic proposition, and temporal operators & (conjunction)
and F (finally) are derived from logic operators [24].

3.2 Compression Graphs

Transition System (TS): As in Definition 1 [5], transition system is a graph
that abstracts the semantic map’s various regions, their interconnections, and
the robot’s position among them.

Definition 1. (Transition System) The transition system is defined as TS =
(S, s0, A, δt, Π, L), where S is a finite state set (s ∈ S), s0 the initial state, A
the action space, δt : S × A → S the transition between states, Π the atomic
proposition set, and L : S → 2Π the labeling function for states where the atomic
proposition is true (details are in [5]).

Fig. 3: Transition system formulation process. A region growing algorithms clus-
ters regions with identical labels. A transition system then represents the con-
nections.

As in Fig. 3, a region growing algorithms clusters regions with identical labels.
Initially positioned in region r5 with state s0, the robot triggers action A upon
transitioning between regions. The labeling function L ensures the state truth
of the robot’s current region.



Büchi Automaton (BA): The Büchi automaton (Definition 2 [5]) represents
the sequential tasks and constraints of linear temporal logic as a graph. A robotic
system determines whether its given commands are satisfied with Büchi au-
tomata [25].

Definition 2. (Büchi Automaton) BA = (Qb, qb,0, Σ, δb, Fb), where Qb is
the finite state set(qb ∈ Qb), qb,0 the initial state, Σ = 2Π the LTL symbol set,
δb : Qb × Σ → 2Qb the transition between states, and Fb ⊆ Qb the accept state
set (details are in [5]).

Traversal of the regions associated with an edge allows movement between
nodes, where an edge labeled with 1 denotes all possible regions. Failure to
traverse an appropriate region results in a constraint violation of the Büchi
automaton.

3.3 Planning

Product Automaton (PA): The product automaton is a composite graph
formed from the transition system and the Büchi automaton, defined as a tuple
in Definition 3 [5].

Definition 3. (Product Automaton) PA = TS × BA = (Qp, qp,0, Σ, δp, Fp),
Qp = S × Qb(qp = (s, qb) ∈ Qp), where qp,0 = (s0, qb,0) is the initial state,
Σ = 2Π the LTL symbol set, δp : Qp → Qp the connectivity between states, and
Fp ⊆ Qp the set of accept states (details are in [5]).

The combination of the transition system and the Büchi automaton allows
simultaneous consideration of the environment and tasks. Through graph explo-
ration from the initial state (s0, qb,0) to (sF , qb,F ) where qb,F ∈ Fb, the robot
identifies a task plan ξ = {(si, qb,i)}i=0,1,...,F that satisfies the command φ.

Path Planning: Through path planning, the robot executes its given task for
each region or goal. First, the robot creates a cost map by inflating all regions
and obstacles on the semantic map to the robot size. The robot then employs a
global search algorithm [26] to plan the path from the robot’s current position to
the goal, and a local search algorithm [27] to traverse the path while outputting
velocity commands for avoiding constrained regions and obstacles.

4 Reactive Constraint Relaxation Methodology

4.1 Overview

The path planning method includes a reactive constraint-relaxation process, in-
dicated by the red line in Fig. 4. The method proceeds through three stages:
(1) assessing task difficulty, (2) scoring constraint regions, and (3) relaxing con-
straints and re-planning.
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Fig. 4: Reactive constraint relaxation methodology block diagram.

4.2 Constraint Relaxation Threshold

Constraint relaxation occurs when goal-reaching is difficult under the existing
constraints. The method determines task difficulty by whether the difference
between the current distance drobot to the goal and the minimum Manhattan
distance to the goal dmin exceeds a threshold,

drobot > dmin + threshold. (2)

4.3 Score Evaluation

Distance: We use the Manhattan distance dconstraint from the constraint region
center to the goal to account for urban environment features such as buildings
and roads. As in Eq. (3), the distance score Sd,

Sd = 1− dconstraint
2l

, (3)

has a value between 0 and 1 based on dconstraint and the map size l. The distance
score is proportional to the negative of the distance dconstraint, indicating how
useful it was in reaching the goal.

Commonsense Knowledge: We assign commonsense-based scores to con-
straints using word similarities from the large-scale language dataset ConceptNet
Numberbatch [28], employed by former studies for commonsense scoring [29].

After finding the word similarity between constraint labels and the roads, we
normalize the similarity values. As in Eq. (4), the commonsense score Sc,

Sc =
wsidewalk − wroad + 1

2
. (4)

has a value between 0 and 1 based on the word similarity wsidewalk to sidewalks
and wroad to roads. The commonsense scores for crosswalks, grass, and roads
were 0.59, 0.44, and 0.20, respectively.

4.4 Constraint Relaxation Method

We relax the constraint with the highest score to establish a new path plan
through the constrained region. After scoring the constraints with Sd and Sc,
we find the weighted sum Ss,



Ss = w ∗ Sd + Sc. (5)

We modify the LTL to allow passage through the constraint region with the
highest weighted sum and reconstruct the Büchi automaton and product au-
tomaton according to the modified LTL. Finally, based on the reconstructed
product automaton, we perform graph exploration to establish a new task plan
that passes through the relaxed constraint region.

(a) Qualitative evaluation environment

(b) Village environment (c) City environment

Fig. 5: Evaluation environments. (a) Qualitative evaluation environment with
crosswalk, road, and lawn constraints. (b) Quantitative evaluation village envi-
ronment. (c) Quantitative evaluation downtown environment.

5 Performance Evaluation

5.1 Experiment Settings

Simulation environment: As in Fig. 5, we conducted qualitative and quan-
titative evaluations for a navigation task in a 3D CARLA simulation environ-
ment [30]. The initial constraint was to travel on sidewalks only for all evaluation
settings.



: Start,   : Goal,    : Failure,   : Relaxation

Full-relaxation Zero-relaxation Reactive relaxation(Ours)
(a) Qualitative comparison of constraint-relaxation methods

(b) Qualitative compairson of scoring methods

Fig. 6: Comparison results with (a): other constraint-relaxation methods and (b):
scoring methods.

Navigation system: We evaluated the reactive constraint-relaxation method’s
performance using a pedestrian agent with the CARLA simulator. The agent
used semantic LiDAR to acquire a semantic point cloud for the surrounding en-
vironment, then classified the ground into four labels: sidewalk, road, crosswalk,
and grass. The agent then created a combined map from the semantic and metric
maps.

Reactive constraint-relaxation method parameters: We set the threshold
value for Eq. (2) to 10m, and the constraint score weight w to 3.887, indicating
that the grass constraint was to be relaxed if no crosswalks are within 30m of
the agent.

5.2 Qualitative Evaluation

Given the command to travel from the apartment to the church along the side-
walk, the reactive constraint-relaxation method relaxed the crosswalk constraint
4 times and the grass constraint once. (Video link: https://youtu.be/Gpro85V-
zBk)



Table 1: Quantitative evaluation results. The best and second-to-best results are
in red and blue, respectively.

Env. Method
Success Constraint Violation Distance (m)
Rate (%) Road Crosswalk Grass Total

Village

Random relaxation 91 66.43 18.46 85.05 169.94
Full relaxation 96 33.27 3.12 72.22 108.62
Zero relaxation 10 0.01 0.00 0.08 0.09

Reactive relaxation (Ours) 95 12.53 22.81 76.15 111.49

Downtown

Random relaxation 90 127.93 26.68 - 154.61
Full relaxation 95 63.06 4.24 - 67.30
Zero relaxation 22 0.00 0.00 - 0.00

Reactive relaxation (Ours) 95 20.10 41.85 - 61.94

Comparisons: The reactive constraint-relaxation method was compared with
zero-relaxation and full-relaxation methods in Fig. 6. While the zero-relaxation
method failed to reach the goal and the full-relaxation method took a dangerous
road-crossing path, our method reached the goal by relaxing safe constraints
such as crosswalks and grass. Similarly, distance-only scoring took a dangerous
road-crossing path and commonsense-only scoring failed to find constraints to
relax to reach the goal, indicating both distance and commonsense scores must
be considered when relaxing constraints.

5.3 Quantitative Evaluation

The results of the quantitative evaluation are shown in Table 1.

Comparisons: Fig. 7 compares the navigation success rate and the distance
traveled in constraint-violated areas for the reactive constraint-relaxation method
with those of random-relaxation and full-relaxation methods. In Fig. 7-(b), the
left-hand chart graphs the distance for all violated constraints, while the right-
hand chart graphs the distance for violated road constraints only.

While most driving tasks failed without constraint-relaxation, the reactive
constraint-relaxation method achieved similar success rates to full relaxation.
Although the constraint violation distances for all constraints were similar for the
reactive constraint-relaxation method and full-relaxation method, our method
decreased the violation distance for roads by over 60%. These results indicate
that reactive constraint-relaxation is necessary for navigation completeness and
safety.

6 Conclusion

We introduced a novel urban navigation approach that reactively relaxes con-
strained regions for efficient and safe navigation. Our method shows a navigation
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Fig. 7: Comparison results for (a): navigation success rate and (b): constraint
violation distance.

success rate of 95% for multiple simulation environments. In addition, compared
to a full-relaxation method, our method traveled 60% less distance on roads,
which are semantically the most dangerous constraint to relax.

Lastly, we seek to expand the current method with various data-driven mod-
els to autonomously define constraints, leveraging inverse constraint learning [31,
32] and large language models [33]. Further, we plan to incorporate natural-
language based safety space indicators [34] and conduct real world evaluations.
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